A Delicate Nanoscale Motor Made by Nature—The Bacterial Flagellar Motor
نویسندگان
چکیده
The bacterial flagellar motor (BFM) is a molecular complex ca. 45 nm in diameter that rotates the propeller that makes nearly all bacteria swim. The motor self-assembles out of ca. 20 different proteins and can not only rotate at up to 50 000 rpm, but can also switch rotational direction in milliseconds and navigate its environment to maneuver, on average, towards regions of greater benefit. The BFM is a pinnacle of evolution that informs and inspires the design of novel nanotechnology in the new era of synthetic biology.
منابع مشابه
Applying torque to the Escherichia coli flagellar motor using magnetic tweezers
The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagell...
متن کاملStructure and Function of the Bi-Directional Bacterial Flagellar Motor
The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electroche...
متن کاملExchange of rotor components in functioning bacterial flagellar motor.
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in function...
متن کاملBacterial chemotaxis: Unsolved mystery of the flagellar switch
Impressive progress has been made in understanding the mechanism of bacterial chemotaxis and function of the flagellar motor, but how the direction of rotation is reversed by the 'flagellar switch'--a central step in chemotaxis--remains obscure and calls for new experimental approaches.
متن کاملLoad-Dependent Assembly of the Bacterial Flagellar Motor
UNLABELLED It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the num...
متن کامل